Fabrication of a SnO2-Based Acetone Gas Sensor Enhanced by Molecular Imprinting
نویسندگان
چکیده
This work presents a new route to design a highly sensitive SnO2-based sensor for acetone gas enhanced by the molecular imprinting technique. Unassisted and acetone-assisted thermal synthesis methods are used to synthesis SnO2 nanomaterials. The prepared SnO2 nanomaterials have been characterized by X-ray powder diffraction, scanning electron microscopy and N2 adsorption-desorption. Four types of SnO2 films were obtained by mixing pure deionized water and liquid acetone with the two types of as-prepared powders, respectively. The acetone gas sensing properties of sensors coated by these films were evaluated. Testing results reveal that the sensor coated by the film fabricated by mixing liquid acetone with the SnO2 nanomaterial synthesized by the acetone-assisted thermal method exhibits the best acetone gas sensing performance. The sensor is optimized for the smooth adsorption and desorption of acetone gas thanks to the participation of acetone both in the procedure of synthesis of the SnO2 nanomaterial and the device fabrication, which results in a distinct response-recovery behavior.
منابع مشابه
SnO2 Highly Sensitive CO Gas Sensor Based on Quasi-Molecular-Imprinting Mechanism Design
Response of highly sensitive SnO2 semiconductor carbon monoxide (CO) gas sensors based on target gas CO quasi-molecular-imprinting mechanism design is investigated with gas concentrations varied from 50 to 3000 ppm. SnO2 nanoparticles prepared via hydrothermal method and gas sensor film devices SC (exposed to the target gas CO for 12 h after the suspension coating of SnO2 film to be fully dried...
متن کاملHierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules
We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch...
متن کاملNanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases
2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anata...
متن کاملModification of SnO2 Nanowires with TeO2 Branches and Their Enhanced Gas Sensing
We prepared a highly sensitive and selective NO2 sensor, based on the TeO2 branched SnO2 nanowires (NWs), in terms of vapor-liquid-solid method, with subsequent growing of branches on the stems of SnO2 NWs. Fabricated sensors showed a high response higher than 10 to 10 ppm of NO2 gas at 100 °C. We investigated the associated sensing mechanisms, with respect to the enhancement of sensing behavio...
متن کاملSynthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts
Single crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sen...
متن کامل